已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x−1)>f(13)的x取值范围是( ) A.(23,+∞) B.(23,+∞)∪(−∞,13) C.[23,+∞) D.[12,23)
问题描述:
已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x−1)>f(
)的x取值范围是( )1 3
A. (
,+∞)2 3
B. (
,+∞)∪(−∞,2 3
)1 3
C. [
,+∞)2 3
D. [
,1 2
) 2 3
答
根据函数在区间[0,+∞)单调递增,得当2x-1≥0,即x≥12时,不等式f(2x−1)>f(13)等价于2x-1>13,解之得x>23而当2x-1<0,即x<12时,由于函数是偶函数,所以f(2x−1)>f(13)等价于f(1−2x)>f(13)再根据单调性...