已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x−1)>f(13)的x取值范围是(  ) A.(23,+∞) B.(23,+∞)∪(−∞,13) C.[23,+∞) D.[12,23)

问题描述:

已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x−1)>f(

1
3
)的x取值范围是(  )
A. (
2
3
,+∞)

B. (
2
3
,+∞)∪(−∞,
1
3
)

C. [
2
3
,+∞)

D. [
1
2
2
3
)

根据函数在区间[0,+∞)单调递增,得当2x-1≥0,即x≥12时,不等式f(2x−1)>f(13)等价于2x-1>13,解之得x>23而当2x-1<0,即x<12时,由于函数是偶函数,所以f(2x−1)>f(13)等价于f(1−2x)>f(13)再根据单调性...