高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明

问题描述:

高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明
听说用中值定理可以证明 不过我还是不会
不太懂中值定理 c是怎么回事 我一定会采纳的

构造一个辅助函数g(x)=xf(x),然后,g(a)=g(b)=0,这是用罗尔定理来证明的,然后根据这个 定理就可以知道必存在一点x.使得g‘(x.)=o,代入得:x.f’(x.)+f(x.)=0,其实中值定理就是用两点a,b间连线来做平行线,只要...