一道关于导数的高数证明题,设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:在(a,b)内至少存在一点 ξ,使得f'(ξ)+f(ξ)=0
问题描述:
一道关于导数的高数证明题,
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:在(a,b)内至少存在一点 ξ,使得f'(ξ)+f(ξ)=0
答
证明:
构造F(x)=f(x)e^x,则F(a)=F(b)=0
由罗尔定理知,在(a,b)内至少存在一点 ξ,使得F'(ξ)=e^(ξ)(f'(ξ)+f(ξ))=0
即f'(ξ)+f(ξ)=0