设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).

问题描述:

设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
使f '(ξ)g(ξ)+f(ξ)g '(ξ)=0

构造函数F(x)=f(x)g(x)
则F'(x)=f'(x)g(x)+f(x)g'(x)
显然F(x)满足罗尔定理的条件故结论成立