设P为椭圆x2a2+y2b2=1(a>b>0)上一点,F1、F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则椭圆的离心率为( ) A.22 B.32 C.23 D.63
问题描述:
设P为椭圆
+x2 a2
=1(a>b>0)上一点,F1、F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则椭圆的离心率为( )y2 b2
A.
2
2
B.
3
2
C.
2
3
D.
6
3
答
∵∠PF1F2=15°,∠PF2F1=75°,
∴,△PF1F2为直角三角形,∠F1PF2=90°,
设|PF1|=m,|PF2|=n,|F1F2|=2c,
则n=2csin75°,m=2csin15°,
又|PF1|+|PF2|=m+n=2a
∴2csin15°+2csin75°=2a,
∴e=
=c a
=1 sin15°+sin75°
.
6
3
故选:D.