如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.(1)求AD的长;(2)当△PDC的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=112S△ABC?若存在,请求出t的值;若不存在,请说明理由.

问题描述:

如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.

(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=

1
12
S△ABC?若存在,请求出t的值;若不存在,请说明理由.

(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,PD=12-t,又∵由△PDM面积为12PD×DC=15,解得PD=6,∴t=6.(3)假设存在t,使得S△PMD=112S△ABC.①若点M在线段CD上,...
答案解析:①根据等腰三角形性质和勾股定理解答即可;
②根据直角三角形面积求出PD×DC×

1
2
=15即可求出t;
③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.
考试点:勾股定理;三角形的面积.
知识点:此题关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.