若数列an的通项公式是an=3^(-n)+(-2)^(-n+1),则lim(a1+a2+a3+.+an)=
问题描述:
若数列an的通项公式是an=3^(-n)+(-2)^(-n+1),则lim(a1+a2+a3+.+an)=
答
bn=3^-n cn=(-2)^(-n+1) a1+a2+c2.......an=b1+b2+b3+......bn+c1+c2+c3+.....cn= 1/3*[1-(1/3)^n]/(1-1/3)+1*[1-(-1/2)^n]/[1-(-1/2)]
lim(a1+a2+a3+。。。+an)=lim1/3*[1-(1/3)^n]/(1-1/3)+1*[1-(-1/2)^n]/[1-(-1/2)]=1/3*3/2+1*3/2=2+3/2=7/2
答
an=3^(-n)+(-2)^(-n+1)a1+a2+...+an = (1/3)(1- (1/3)^n )/(1-1/3) + ( 1 - (-2)^(-n) )/(1+2)= (1/2)(1- (1/3)^n ) + (1/3)( 1 - (-2)^(-n) )lim(n->∞) (a1+a2+...+an)=lim(n->∞) [(1/2)(1- (1/3)^n ) + (1/3)( 1...