求抛物线y=2x^2直线x=2和y=0所围成图形的面积和锁围图形绕绕x轴旋转所得的旋转体的体积
问题描述:
求抛物线y=2x^2直线x=2和y=0所围成图形的面积和锁围图形绕绕x轴旋转所得的旋转体的体积
答
S=∫(0,2)2x²dx
=2/3x³|(0,2)
=16/3
V=∫(0,2)πf²(x)dx
=∫(0,2)π(2x²)²dx
=4π∫(0,2)x∧4dx
=(4π/5)x∧5|(0,2)
=128π/5.