求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积

问题描述:

求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积

不定积分:∫πY²dx=∫π(e^(-x))²dx=∫π*e^(-2x)dx=-π/2*e^(-2x)+C(c为常数)
定积分:【-π/2*e^(-2∞)+C】-【-π/2*e^(-20)+C】=π/2
此平面图形绕x轴旋转而成的旋转体的体积为π/2