过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D. (1)求D的面积A; (2)求D绕直线x=e旋转一周所得旋转体的体积V.

问题描述:

过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.
(1)求D的面积A;
(2)求D绕直线x=e旋转一周所得旋转体的体积V.

建立直角坐标系,作出y=lnx曲线及其过原点的切线.(1)设切点的横坐标为x0,则曲线y=lnx在点(x0,lnx0)处的切线方程是y=lnx0+1x0(x−x0).①由该切线过原点知 lnx0-1=0,从而x0=e.代入①式得该切线的方程...