在四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC垂直底面ABCD,

问题描述:

在四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC垂直底面ABCD,
E为PC的中点。求(1)异面直线PA与DE所成角的余弦值(2)点D到面PAB的距离

(1)依题意,底面四边形ABCD边长为a,在△PDC中过P点作CD边的高,交CD于F点,则PF=√3a/2,设AB中点G,连接FG、PG,∵平面PDC垂直底面ABCD,∴PF⊥FG,∵F、G为正方形ABCD对边中点,∴FG⊥CD,∵PF、CD为面PDC中的相交直线,∴FG...