已知圆C:(x-1)^2+(y-2)^2=25,直线L:(2m+1)x+(m+1)y-7m-4=0,求证不论m取什么实数,直线恒与圆相交于两点

问题描述:

已知圆C:(x-1)^2+(y-2)^2=25,直线L:(2m+1)x+(m+1)y-7m-4=0,求证不论m取什么实数,直线恒与圆相交于两点
m为实数

直线与圆交于两点,说明圆心到直线的距离小于半径,运用点到直线距离公式得:
|2m+1+2(m+1)-7m-4|/√[(2m+1)^2+(m+1)^2]<5
即|-3m-1|/√[(2m+1)^2+(m+1)^2]<5
两边平方得
(3m+1)^20
△=144^2-4*116*490恒成立
因此不论m取什么实数,直线恒与圆相交于两点