已知函数f(x)=(x+1)Inx-x+1.(1)若xf'(x)≤x^2+ax+1,求a的取值范围;(2)证明:(x-1)f(x)≥0.
问题描述:
已知函数f(x)=(x+1)Inx-x+1.(1)若xf'(x)≤x^2+ax+1,求a的取值范围;(2)证明:(x-1)f(x)≥0.
已知函数f(x)=(x+1)Inx-x+1.
(1)若xf'(x)≤x^2+ax+1,求a的取值范围;
(2)证明:(x-1)f(x)≥0.
答
f'(x)=lnx+(x+1)/x-1=lnx+1/x
(1)
xf'(x)≤x^2+ax+1
即xlnx+1≤x^2+ax+1
xlnx≤x^2+ax
a≥lnx-x恒成立
设g(x)=lnx-x,需a≥g(x)max
g'(x)=1/x-1=(1-x)/x
00,f(x)递增,f(x)>f(1)=0
∴(x-1)f(x)>0
x=1时,(x-1)f(x)=0
00,f(x)递增
f(x)0
综上,x>0时,总有(x-1)f(x)≥0.