已知公差为d(d>1)的等差数列{an}和公比为q(q>1)的等比数列{bn},满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}(1)求通项an,bn;(2)求数列{an•bn}的前n项和Sn.
问题描述:
已知公差为d(d>1)的等差数列{an}和公比为q(q>1)的等比数列{bn},
满足集合{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}
(1)求通项an,bn;
(2)求数列{an•bn}的前n项和Sn.
答
(1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4而{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5},∴a3=1,a4=3,a5=5,b3=1,b4=2,b5=4∴a...
答案解析:(1)结合等差数列与等比数列的项,由{a3,a4,a5}∪{b3,b4,b5}={1,2,3,4,5}可得a3,a4,a5,b3,b4,b5的值,从而可求数列的通项,
(2)由于an,bn分别为等差数列、等比数列,用“乘公比错位相减”求数列的和sn
考试点:等差数列与等比数列的综合;数列的求和.
知识点:本题主要考查了等差数列与等比数列的综合,结合集合的基本运算求数列中的项,进而求通项公式,而“乘公比错位相减”求数列的和是数列求和的常考点,其结构特点是:若数列an,bn分别为等差数列与等比数列,则对数列cn=an•bn求和应用此法,要注意掌握.