如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD= 二分之一AB,点E、F分别为边BC、AC的中点.求DF=AE

问题描述:

如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD= 二分之一AB,点E、F分别为边BC、AC的中点.求DF=AE

连接EF
∵E、F分别为边BC、AC的中点
∴EF是△ABC的中位线
∴EF=1/2AB
EF∥AB
∵AD=1/2AB
∴AD=EF
∵EF∥AD(AB)
∴ADFE是平行四边形
∴DF=AE