如图在△ABC中,AB=AC,D点在BA的延长线上,点E在AC上,且AD=AE,DE的延长线交BC于点F,求证DF⊥BC
问题描述:
如图在△ABC中,AB=AC,D点在BA的延长线上,点E在AC上,且AD=AE,DE的延长线交BC于点F,求证DF⊥BC
答
证明:因为AD=AE
所以角D=角AED
因为角AED=角CEF
所以角D=角CEF
因为AB=AC
所以角B=角C
所以三角形BFD和三角形CFE相似(AA)
所以角BFD=角CFE
因为角BFD+CFE=180度
所以角BFD=角CFE=90度
所以DF垂直BC