如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AB=7,FC=3,求AE的长.
问题描述:
如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AB=7,FC=3,求AE的长.
答
连接BD,
∵∠ABC=90°,AB=CB
∴∠A=∠C=45°.
∵D为AC边上中点,
∴∠4=
∠ABC=45°,BD=AD=CD=1 2
AC.DB⊥AC,1 2
∴∠A=∠4.∠ADB=90°.
∴∠1+∠2=90°.
∵DE⊥DF,
∴∠EDF=90°,
∴∠2+∠3=90°,
∴∠1=∠3.
在△ADE和△BDF中
,
∠A=∠4 AD=BD ∠1=∠3
∴△ADE≌△BDF(ASA)
∴AE=BF.
∵AB=7,
∴BC=7
∵BF=BC-CF,FC=3
∴BF=7-3=4.
答:BF=4.