(bn,an是数列,{an}=3n-5,an是首项为-2,公差为3的等差数列)bn=2^an,求数列bn的前n项S
问题描述:
(bn,an是数列,{an}=3n-5,an是首项为-2,公差为3的等差数列)bn=2^an,求数列bn的前n项S
答
对sn=2^-2+2^1+2^3+.....+2^(3n-5),首项为1\4,公比为8,可得出答案。good luck to you
答
s=-1/28(1-8的n次方)
答
bn=2^an =2^(3n-5) =2^(3n)*2^(-5)b(n-1)=2^[3(n-1)]*2^(-5) =2^(3n)*2^(-3)*2^(-5)bn/b(n-1)=[2^(3n)*2^(-5)]/[2^(3n)*2^(-3)*2^(-5)] =2^3∴bn是以公比q=2^3的等比数列b1=2^(3*1)*2^(-5) ...