高中等差数列前n项和问题、谢求数列4、20、64、……(3n-1)*2的n次方的前n项和

问题描述:

高中等差数列前n项和问题、谢
求数列4、20、64、……(3n-1)*2的n次方的前n项和

2Sn=8+40+128+……(3n-1)*2的n+1次方,逐项相减,用2Sn的倒数第二项减去Sn的最后一项,依次向前
那么2Sn-Sn=(3n-1)*2的n+1次方-3*2的n次方-3*2的n-1次方-....-3*2^2-4
=(3n-1)*2的n+1次方-3*2的n+1次方+5
==(3n-4)*2的n+1次+5

设前n项和Sn=4+20+64+........+(3n-1)*2^n
∵Sn=(3*1*2-2)+(3*2*2²-2²)+(3*3*2³-2³)+.......+(3*n*2^n-2^n)
=3(1*2+2*2²+3*2³+......+n*2^n)-(2+2²+2³+......+2^n)
设An=1*2+2*2²+3*2³+......+n*2^n..........(1)
Bn=2+2²+2³+......+2^n...........(2)
∴Sn=3An-Bn
∵Bn=2(1-2^n)/(1-2)=2^(n+1)-2
2An=1*2²+2*2³+3*2^4+......+n*2^(n+1)...........(3)
∴(3)-(1)得An=2+2²+2³.......+2^n-n*2^(n+1)
=2+n*2^(n+1)-2^(n+1)
∴Sn=3An-Bn
=3[2+n*2^(n+1)-2^(n+1)]-[2^(n+1)-2]
=6+3n*2^(n+1)-3*2^(n+1)-2^(n+1)+2
=3n*2^(n+1)-4*2^(n+1)+8
=(3n-4)*2^(n+1)+8
故数列4、20、64、……(3n-1)*2的n次方的前n项和=(3n-4)*2^(n+1)+8。

An=(3n-1)^2=9n^2-6n+1
Sn=9*n(n+1)(2n+1)/6-6n(n+1)/2 +n
这个题是分别算9n^2的各项和 加上-6n的各项和 加上1的各项和
这里说明一下n^2的各项和是n(n+1)(2n+1)/6
绝对是我算的哦
看错题了 错了错了 是错项相减
S=(3*1-1)*2+(3*2-1)*2^2+(3*3-1)*2^3……+(3*n-4)*2^(n-1) + (3*n-1)*2^n①
2S=(3*1-1)*2^2+(3*2-1)*2^3+(3*3-1)*2^4……+(3*n-4)*2^n + (3*n-1)*2^(n+1)②
①-②= -S=(3*1-1)*2+{(3*2-1)-(3*1-1)}*2^2 +{(3*3-1)-(3*2-1)}*2^3+……+{(3n-1)(3n-4)}*2^n - (3*n-1)*2^(n+1)
=(2)*2+(3)*2^2+(3)*2^3+……+(3)*2^n -(3*n-1)*2^(n+1)
=4+3(2^2+2^3+……+2^n)-(3*n-1)*2^(n+1)
S=(3*n-1)*2^(n+1)-3(2^2+2^3+……+2^n)-4
这个吧

楼上误会了,其实这是典型的等差数列和等比数列对应项相乘,运用错位相减法可解。

楼上的明显算错了,代入A1 A2就知道了
An=(3n-1)*2^n
Sn=A1+A2+A3+.(3n-1)*2^n
S(n+1)=A1+A2+A3+.(3n-1)*2^n+(3n+2)*2^(n+1)
用错位相减法S(n+1)-Sn
得到:A1+(A2-A1)+(A3-A2)+(A4-A3).[(3n+2)*2^(n+1)-(3n-1)*2^n]
新数列:A(n+1)-An=(3n+5)*2^n=(3n-1)*2^n+6*2^n=An+6*2^n
所以:S(n+1)-Sn=A1+Sn+S(6*2^n)=A1+Sn+6[2^(n+1)-2]=4+Sn+6*2^(n+1)-12
S(n+1)-Sn=A(n+1)=(3n+2)*2^(n+1)
由上面两式可得Sn=(3n-4)*2^(n+1)+8

An=(3n-1)*2^n
所以
Sn=2*2+5*2^2+8*2^3+11*2^4+……+(3n-1)*2^n 两边同乘以2得
2Sn= 2*2^2+5*2^3+ 8*2^4+……+(3n-4)*2^n +(3n-1)*2^(n+1)
上两式错位相减得
Sn-2Sn=2*2+(5*2^2-2*2^2)+(8*2^3-5*2^3)+(11*2^4-8*2^4)+……
+[(3n-1)*2^n-(3n-4)*2^n]- (3n-1)*2^(n+1)
整理得
-Sn=2*2+(3*2^2+3*2^3+3*2^4+……+3*2^n ) - (3n-1)*2^(n+1)
=2*2-3*2+(3*2+3*2^2+3*2^3+3*2^4+……+3*2^n ) - (3n-1)*2^(n+1)
= -2+3*(2+2^2+2^3+2^4+……+2^n ) - (3n-1)*2^(n+1)
= -2+3*[2*(2^n-1) ] - (3n-1)*2^(n+1)
= -8+(8-6n)*2^n
所以
Sn= 8+(6n-8)*2^n