已知数列{an}满足a1=1,an+1=2an+2.(1)设bn=2^n/an,求证:数列{bn}是等差数列.(2)求数列{an}的通项公式.a(n+1)

问题描述:

已知数列{an}满足a1=1,an+1=2an+2.
(1)设bn=2^n/an,求证:数列{bn}是等差数列.
(2)求数列{an}的通项公式.
a(n+1)

把题写清楚
a(n+1)还是(an)+1

题目有点不清楚,a下标是n+1,等式右边是2倍的a下标n+2
还是等式右边为2+2倍的a下标n?

an+1=2an+2,an=-1,把an=-1代入bn=2^n/an,得,bn=-2^n
b2-b1=-2^*2-(-2)=-6,所以{bn}是等差数列