已知向量OA=(1,-3),OB=(2,-1),OC=(m+1,m-2),若点A、B、C能构成三角形,则实数m应满足的条件是(  )A. m≠-2B. m≠12C. m≠1D. m≠-1

问题描述:

已知向量

OA
=(1,-3),
OB
=(2,-1),
OC
=(m+1,m-2),若点A、B、C能构成三角形,则实数m应满足的条件是(  )
A. m≠-2
B. m≠
1
2

C. m≠1
D. m≠-1

若点A、B、C不能构成三角形,
则只能三点共线.

AB
=
OB
-
OA
=(2,-1)-(1,-3)=(1,2),
AC
=
OC
-
OA
=(m+1,m-2)-(1,-3)=(m,m+1).
假设A、B、C三点共线,
则1×(m+1)-2m=0,
即m=1.
∴若A、B、C三点能构成三角形,则m≠1.
故选C
答案解析:三点能构成三角形的条件不好直接说明,从向量角度来考虑,不能构成三角形则三点共线,三点组成的向量共线,根据向量共线的充要条件写出关系式,得到变量的范围.
考试点:向量的共线定理.
知识点:向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的.