若3k,2k+2,3k+3是等比数列的前3项,则第四项为
问题描述:
若3k,2k+2,3k+3是等比数列的前3项,则第四项为
答
3k/(2k+2) = (3k+3)/x
x=2(k+1)^2 /k
答
(2k+2)/3k=(3k+3)/(2k+2)解得k=4/5,第四项为81/8
答
3k/(2k+2)=(2k+2)/(3k+3)
9k^2 +9k=4k^2 +8k +4
5k^2 +k- 4=0
(5k-4)(k+1)=0
k=4/5 or -1
12/5 ,18/5 ,27/5 所以下一个是81/10
81/10=?(4/5)
81/10=?(8/10)
81/10=10k+1/10
答
(2k+2)^2=3k*(3k+3)得k=4/5或-1(舍去,有项为0)
所以前三为,12/5.18/5.27/5.可以得第4项为81/10