已知tan(α-β)=k*tan(α+β),求证sin2α/sin2β=1+k/1-k
问题描述:
已知tan(α-β)=k*tan(α+β),求证sin2α/sin2β=1+k/1-k
答
这种证明题按题来弄很难
所以用左边=右边来解题
左边=sin2α/sin2β
右边=1+k/1-k
右边k可用题干中的k代替,然后化简
答
sin2a=sin[(a+β)+(a-β)]=sin(a+β)cos(a-β)+cos(a+β)sin(a-β)sin2β=sin[(a+β)-(a-β)]=sin(a+β)cos(a-β)-cos(a+β)sin(a-β)分子分母同除以cos(a+β)cos(a-β)得sin2α/sin2β...