设等差数列{an}的前n项之和为Sn,已知S10=100,则a4+a7=______.

问题描述:

设等差数列{an}的前n项之和为Sn,已知S10=100,则a4+a7=______.

由等差数列的求和公式可得:
S10=

10(a1+a10)
2
=5(a1+a10)=100,
解得a1+a10=20,
而由等差数列的性质可得:a4+a7=a1+a10=20,
故答案为:20
答案解析:由求和公式可得a1+a10=20,而由等差数列的性质可得a4+a7=a1+a10,代入可得答案.
考试点:等差数列的前n项和.
知识点:本题考查等差数列的性质和求和公式,属基础题.