求证:a2+b2+1≥ab+a+b.
问题描述:
求证:a2+b2+1≥ab+a+b.
答
证明:∵a2+b2≥2ab,a2+1≥2a,b2+1≥2b,
∴把以上三个式子相加得:2(a2+b2+1)≥2(ab+a+b)
∴a2+b2+1≥ab+a+b