如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2 (1)求证:平面AEF⊥平面PBC;(2)求二面角P-BC-A的大小;(3)求三棱锥P-AEF的体积.
问题描述:
如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2
(1)求证:平面AEF⊥平面PBC;
(2)求二面角P-BC-A的大小;
(3)求三棱锥P-AEF的体积.
答
(1)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,
∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵AE⊂平面PAB,∴AE⊥BC,
∵AE⊥PB,PB∩BC=B,∴AE⊥平面PBC,
∵AE⊂平面AEF,∴平面AEF⊥平面PBC;
(2)∵BC⊥平面PAB,PB⊂平面PAB,∴BC⊥PB,
结合AB⊥BC,可得∠PBA是二面角P-BC-A的平面角,
∵Rt△PAB中,PA=AB=2,∴∠PBA=45°,
由此可得二面角P-BC-A的大小为45°;
(3)由(1)AE⊥平面PBC
又∵AF⊥PC
∴EF⊥PC(三垂线定理逆定理)
∴△PEF∽△PCB
∴=
=S△PEF S△PBC
=PE2
PC2
,∴S△PEF=1 6
S△PBC=1 6
,
2
3
∴VP-AEF=VA-PEF=
×1 3
×
2
=
2
3
.2 9