直线y=kx+b经过点A(-2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为______.

问题描述:

直线y=kx+b经过点A(-2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为______.

直线y=kx+b经过点A(-2,0),
直线y=kx+b与y轴的交点坐标是(0,b),
则△ABO的面积是

1
2
×2•b=2,解得b=2.
故b的值是2.
答案解析:根据△ABO(O为坐标原点)的面积为2,列出方程求出b的值.
考试点:待定系数法求一次函数解析式.

知识点:本题要注意利用一次函数的特点,列出方程,求出未知数,再根据一次函数图象的特点解答,需同学们熟练掌握.