已知直线l过点P(2,1),且与X轴、y轴的正半轴分别交于A、B两点,O为坐标原点.当OA+OB的值最小时,求直线l的方程.

问题描述:

已知直线l过点P(2,1),且与X轴、y轴的正半轴分别交于A、B两点,O为坐标原点.当OA+OB的值最小时,求直线l的方程.

由题意可知直线l的斜率k0
所以由均值定理得:
-1/k -2k≥2√[(-1/k)*(-2k)]=2√2 (当且仅当-1/k =-2k即k=-√2/2时取等号)
这就是说当k=-√2/2,OA+OB有最小值3+2√2
所以此时直线l的方程是:
y=(-√2/2)*x +√2 +1