如图,矩形A’BC’O’是矩形OABC(边OA在X轴正半轴,边OC在Y轴正半周上)饶B逆时针旋转得到的.O’点在X轴的正半轴上,B点的坐标为(1,3)(1)如果二次函数Y=AX^2+BX+C(A≠0 )的图象经过O,O’ 两点且图象顶点 M
问题描述:
如图,矩形A’BC’O’是矩形OABC(边OA在X轴正半轴,边OC在Y轴正半周上)饶B逆时针旋转得到的.O’点在X轴的正半轴上,B点的坐标为(1,3)(1)如果二次函数Y=AX^2+BX+C(A≠0 )的图象经过O,O’ 两点且图象顶点 M的纵坐标为 -1,求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点 ,使得△ POM为直角三角形?若存在,请求出 P点的坐标和△ POM 的面积;若不存在,请说明理由;(3)求边 C’O’所在直线的解析式.
答
(1)连接BO,BO′则BO=BO′∵BA⊥OO′∴AO=AO′∵B(1,3)∴O′(2,0),M(1,-1),∴ {4a+2b+c=0a+b+c=-1c=0,解得a=1,b=-2,c=0,∴所求二次函数的解析式为y=x²-2x.(2)设存在满足题设条件的点P(x,y)连接OM,P...