若双曲线x²/9-y²/4=1的渐近线上的点A与双曲线的右焦点F的距离最小,抛物线y²=2px通过点A,则P值为 

问题描述:

若双曲线x²/9-y²/4=1的渐近线上的点A与双曲线的右焦点F的距离最小,抛物线y²=2px通过点A,则P值为 

取双曲线的渐近线方程为2x-3y=0,焦点为F(√13,0).F到渐近线的最小距离就是过F的垂直于渐近线的垂足A.垂线方程为3x+2y-3√13=0,两直线交点A(9/√13,6/√13).
把A点坐标代入抛物线方程得p=2/√13.