正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?

问题描述:

正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?

设BM=x,则MC=4-x,∵∠AMN=90°,∴∠AMB=90°-∠NMC=∠MNC,∴△ABM∽△MCN,则ABMC=BMCN,即44−x=xCN,解得:CN=x(4−x)4,∴S四边形ABCN=12×4×[4+x(4−x)4]=-12x2+2x+8=-12(x-2)2+10,∵0≤x≤4,∴当x=2时...