2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,

问题描述:

2、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式.
(3)当M点运动到什么位置时Rt△ABC∽Rt△AMN,求此时x的值

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; 如图 因为四边形ABCD为正方形 所以,∠BAM+∠AMB=90° 又,AM⊥MN 所以,∠AMN=90° 所以,∠AMB+∠...