已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于_.

问题描述:

已知函数f(x)=10x,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于______.

由f(x)=10x得:f(m+n)=f(m)f(n),∵f(m+n)=f(m)+f(n),∴f(m)f(n)=f(m)+f(n),设f(m)f(n)=f(m)+f(n)=t,则f(m)、f(n)是x2-tx+t=0的解,∵△=t2-4t≥0,∴t≥4或t≤0(舍去).又f...