已知:在三角形ABC中,角A等于90度,AB=AC,D为bc的中点.E.F分别为AB,AC上的点,且BE=AF,求证三角形DEF是腰直角三角形.
问题描述:
已知:在三角形ABC中,角A等于90度,AB=AC,D为bc的中点.E.F分别为AB,AC上的点,且BE=AF,求证三角形DEF是
腰直角三角形.
答
等边三角形 连接ad 可证三角形ade全等于三角形fdc 进而推出fd=ed
答
证明:
连接AD
∵∠A=90°,AB=AC,D为BC的中点
∴AD⊥BC,∠CAD=∠BAD=∠B=45°
∴AD=BD,
∵BE=AF
∴△DBE≌⊿DAF
∴ED=DF,∠ADF=∠BDE,
∴∠EDF=∠ADB=90º
∴三角形DEF是等腰直角三角形
原题得证