△ABC的三边a、b、c和面积S满足关系式:S=c2-(a-b)2且a+b=2,求面积S的最大值.

问题描述:

△ABC的三边a、b、c和面积S满足关系式:S=c2-(a-b)2且a+b=2,求面积S的最大值.

由余弦定理c2=a2+b2-2abcosC及面积公式S=12absinC代入条件得S=c2-(a-b)2=a2+b2-2abcosC-(a-b)2,即12absinC=2ab(1-cosC),∴1−cosCsinC=14,令1-cosC=k,sinC=4k(k>0)由(1-k)2+(4k)2=cos2C+sin2C=1,...
答案解析:利用余弦定理及三角形的面积公式化简S=c2-(a-b)2后,利用同角三角函数间的基本关系求出sinC的值,然后根据a+b=2,利用基本不等式即可求出面积S的最大值.
考试点:余弦定理.
知识点:此题考查学生灵活运用余弦定理及三角形的面积公式化简求值,灵活运用同角三角函数间的基本关系化简求值,会利用基本不等式求函数的最值,是一道中档题.