在△ABC中角ABC所对的边分别为abc①若c=2,C=π/3且△ABC的面积S=√3求a,b的值②若sinC+sin(B-A)=sin2A判断三角形形状

问题描述:

在△ABC中角ABC所对的边分别为abc①若c=2,C=π/3且△ABC的面积S=√3求a,b的值②若sinC+sin(B-A)=sin2A判断三角形形状

1) 由余弦定理,
a^2+b^2-2ab*cosC=a^2+b^2-ab=4 (1)
S=1/2*ab*sinC=√3/4*ab=√3 (2)
所以 ab=4,a^2+b^2=8,
因此,a=b=2
2) sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sinBcosA=sin2A=2sinAcosA
所以,cosA=0或sinB-sinA=0
即A=π/2或A=B
所以,该三角形是直角三角形或等腰三角形.cosA=0这个可以么?