如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.
问题描述:
如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.
答
证明:过点D作DG∥AE于点G,
∵DG∥AC
∴∠GDF=∠CEF(两直线平行,内错角相等),
在△GDF和△CEF中
,
∠GDF=∠CEF DF=EF ∠DFG=∠CFE
∴△GDF≌△CEF(ASA),
∴DG=CE
又∵BD=CE,
∴BD=DG,
∴∠DBG=∠DGB,
∵DG∥AC,
∴∠DGB=∠ACB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.