已知:如图,在△ABC中,∠C=90°,点E在AC上,且AE=BC,ED⊥AB于点D,过A点作AC的垂线,交ED的延长线于点F. 求证:AB=EF.
问题描述:
已知:如图,在△ABC中,∠C=90°,点E在AC上,且AE=BC,ED⊥AB于点D,过A点作AC的垂线,交ED的延长线于点F.
求证:AB=EF.
答
证明:∵ED⊥AB,
∴∠ADE=∠ACB=90°;
∴∠DAE+∠DEA=∠DAE+∠B=90°,
即∠DEA=∠B;
∵AD⊥EF,FA⊥AC,
∴∠FAE=∠C=90°,
在△AFE和△CAB中
∵
,
∠FAE=∠C AE=BC ∠DEA=∠B
∴△AFE≌△CAB(ASA).
∴AB=EF.