如图,已知四棱锥P-ABCD的底面是菱形,PD垂直平面ABCD求证:平面PAC垂直平面PBD

问题描述:

如图,已知四棱锥P-ABCD的底面是菱形,PD垂直平面ABCD求证:平面PAC垂直平面PBD

证明:已知PD⊥平面ABCD,那么:PD⊥AC
在菱形ABCD中,对角线BD⊥AC
这就是说AC垂直于平面PBD内的两条相交直线PD和BD
所以:AC⊥平面PBD
因为:AC在平面PAC内
所以:平面PAC⊥平面PBD