如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0. 那么具有这种性质的函数f(x)=_.(注:填上你认为正确的一

问题描述:

如果函数f(x)的定义域为R,对于m,n∈R,恒有f(m+n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0.
那么具有这种性质的函数f(x)=______.(注:填上你认为正确的一个函数即可)

令m=n=0,则f(0)=f(0)+f(0)-6∴f(0)=6
因为当x>-1时,f(x)>0 又由f(-1)是不大于5的正整数,
∴方便起见,就假设该函数为一次函数,且f(-1)≤5,则f(x)=x+6或2x+6或3x+6或4x+6或5x+6都可以
故答案为:x+6或2x+6或3x+6或4x+6或5x+6