已知x,y∈R+,且4x+1+12y+1=1,则x+2y的最小值为(  ) A.6 B.7 C.8+2 D.9

问题描述:

已知x,y∈R+,且

4
x+1
+
1
2y+1
=1,则x+2y的最小值为(  )
A. 6
B. 7
C. 8+
2

D. 9

∵x,y∈R+,且4x+1+12y+1=1,∴x+2y=(x+1)+(2y+1)-2=(4x+1+12y+1)[(x+1)+(2y+1)]−2=3+(x+1)2y+1+4(2y+1)x+1≥3+2x+12y+1×4(2y+1)x+1=7.当且仅当4x+1+12y+1=1,x+12y+1=4(2y+1)x+1,即x=5y=1时取等号....