等差数列{an}的首项为a,公差为d;等差数列{bn}的首项为b,公差为e,如果cn=an+bn(n≥1),且c1=4,c2=8,数列{cn}的通项公式为cn=( ) A.2n+1 B.3n+2 C.4n D.4n+3
问题描述:
等差数列{an}的首项为a,公差为d;等差数列{bn}的首项为b,公差为e,如果cn=an+bn(n≥1),且c1=4,c2=8,数列{cn}的通项公式为cn=( )
A. 2n+1
B. 3n+2
C. 4n
D. 4n+3
答
由题意可得cn=an+bn=a+(n-1)d+b+(n-1)e
=(a+b)+(n-1)(d+e),
由c1=4,c2=8可得a+b=4,且a+b+c+d=8,
解得a+b=4,d+e=4,所以cn=4+4(n-1)=4n
故选C