一、在等差数列{an}中,公差d≠0,a2=3,且a1,a3,a7成等比数列.1.求数列{an}的通项公式2.若数列{cn}满足cn=1/nan,其前n项和为Sn,求Sn.二、已知x,y,z成等差数列,且x+1,y+1,z+4成等比数列,且x+y+z=15,求x,y,z.

问题描述:

一、在等差数列{an}中,公差d≠0,a2=3,且a1,a3,a7成等比数列.
1.求数列{an}的通项公式
2.若数列{cn}满足cn=1/nan,其前n项和为Sn,求Sn.
二、已知x,y,z成等差数列,且x+1,y+1,z+4成等比数列,且x+y+z=15,求x,y,z.

一:1:设an通项为an=a1+(n-1)d因为a1,a3,a7等比所以a1*a7=a3^2即 a1*(a1+6d)=(a1+2d)^2化简得 a1=2da2=a1+d=3d=3d=1a1=2{an}=n+12:cn=1/nan=1/n(n+1)=1/n-1/(n+1)Sn=c1+c2+……+cn=1-1/2+1/2-1/3+1/3……+1/n-1/(n+...