知数列an满足a1=4 an=4-4/an-1(n大于等于2)令bn=1/[(an)-2]求证bn是等差数列 求数列an的通项公式

问题描述:

知数列an满足a1=4 an=4-4/an-1(n大于等于2)令bn=1/[(an)-2]求证bn是等差数列 求数列an的通项公式

an-2=2-4/a(n-1)=[2a(n-1)-4]/a(n-1)
1/(an-2)=a(n-1)/[2a(n-1)-4]
=[a(n-1)-2+2]/2[a(n-1)-2]
=1/2+1/[a(n-1)-2]
1/(an-2)-1/[a(n-1)-2]=1/2
所以bn=1/(an-2)是等差数列
公差d=1/2
所以1/(an-2)=1/(a1-2)+(n-1)*1/2=1/2+n/2-1/2=n/2
an-2=2/n
an=2+2/n