使不等式 1/(n+1) + 1/(n+2) + … + 1/(2n+1)
问题描述:
使不等式 1/(n+1) + 1/(n+2) + … + 1/(2n+1)
数学人气:691 ℃时间:2019-10-29 10:51:49
优质解答
不等式左边随n增大递减,证明如下:1/[(n+1)+1]+1/[(n+1)+2]+...+1/[2(n+1)+1]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]=[1/(n+2)+1/(n+3)+...+1/(2n+1)+1/(2n+2)+1/(2n+3)]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]=1/(2n+2)+1/(2n+3...
我来回答
类似推荐
答
不等式左边随n增大递减,证明如下:1/[(n+1)+1]+1/[(n+1)+2]+...+1/[2(n+1)+1]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]=[1/(n+2)+1/(n+3)+...+1/(2n+1)+1/(2n+2)+1/(2n+3)]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]=1/(2n+2)+1/(2n+3...