若复数z满足z^2+2=0,i是虚数单位,则z^3=
问题描述:
若复数z满足z^2+2=0,i是虚数单位,则z^3=
答
令Z = A +双向
Z 2 +2 = 0
Z 2 = -2
(A +双向)2 = -2
2-B 2 +2的ABI = -2 />一个2-b 2分配= -2,及2AB = 0
(+ b的)(AB)= -2
证书2AB = 0
所以一个= 0或b = 0
当= 0,+ BI =±(√2)
所以,当b = 0,+ BI =±(√2)
=±(√2)我
Z 3 =±(√2)] 3
=±(2√2)
答
z²+2=0
z²=-2
z=±(√2)i
z³=[±(√2)i]³=±(2√2)i
希望我的回答对你有帮助,采纳吧O(∩_∩)O!
答
设z=a+bi
z²+2=0
z²=-2
即(a+bi)²=-2
a²-b²+2abi=-2
所以a²-b²=-2 ,且2ab=0,
(a+b)(a-b)=-2
已证2ab=0,
所以a=0或b=0
当a=0时,a+bi=±(√2)i
当b=0时,a+bi=±(√2)i
所以z=±(√2)i
z³=[±(√2)i]³
=±(2√2)i