已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

问题描述:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

证明:∵∠ACB=90°,
∴∠ACD=∠ACB=90°,
在△BEC和△ADC中

BC=AC
∠BCE=∠ACD
CE=CD

∴△BEC≌△ADC(SAS),
∴∠CBE=∠DAC,
∵∠ACB=90°,
∴∠CBE+∠CEB=90°,
∵∠CEB=∠AEF,
∴∠DAC+∠AEF=90°,
∴∠AFE=180°-90°=90°,
∴BF⊥AD.