已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
问题描述:
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
答
证明:∵∠ACB=90°,∴∠ACD=∠ACB=90°,在△BEC和△ADC中∵BC=AC∠BCE=∠ACDCE=CD,∴△BEC≌△ADC(SAS),∴∠CBE=∠DAC,∵∠ACB=90°,∴∠CBE+∠CEB=90°,∵∠CEB=∠AEF,∴∠DAC+∠AEF=90°,∴∠AFE=1...