在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D.

问题描述:

在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D.

证明:连接AC交BD于一点O,
在正方形ABCD中,BD⊥AC,
又正方体中,AA1⊥平面ABCD,
所以,AA1⊥BD,又AA1∩AC=A,
所以BD⊥平面CAA1又A1C⊂平面CAA1
所以A1C⊥BD,连接B1C交BC1于一点O,
同理可证A1C⊥BC1,又 BC1交BD于一点B,
所以A1C⊥平面BC1D
答案解析:要证明A1C⊥平面BC1D,只需证明直线A1C垂直于平面BC1D内的两条相交直线即可,故只需证明A1C⊥BD,A1C⊥BC1即可.
考试点:直线与平面垂直的判定.


知识点:本题考查直线与平面位置关系中的垂直问题,证明思路是:要证线面垂直,需证线线垂直,在证明线线垂直过程中,往往需要通过证明线面垂直来实现,要注意线面垂直、线线垂直间的相互转化.