答
(Ⅰ)∵f(x)=x2+2x,
∴f′(x)=2x+2,
∴an+1=f′(an)=2an+2,
∴=2,又a1+2=3,
∴数列{an+2}是以3为首项,2为公比的等比数列,
∴an+2=3×2n-1,
∴an=3×2n-1-2;
∴Sn=a1+a2+…+an
=3(1+2+22+…+2n-1)-2n
=3×-2n
=3×2n-2n-3.
(Ⅱ)∵bn+1=f(bn)=bn2+2bn,
∴bn+1+1=(bn+1)2,
两边取对数:lg(bn+1+1)=2lg(bn+1),
∴=2
∴数列{lg(bn+1)}是公比为2的等比数列,
又lg(b1+1)=lg(t+1),
∴lg(bn+1)=lg(t+1)•2n-1=lg(t+1)2n−1,
∴bn+1=(t+1)2n−1,
∴bn=(t+1)2n−1-1.
答案解析:(Ⅰ)依题意,易求an+1=f′(an)=2an+2,从而得=2,结合已知有:数列{an+2}是以3为首项,2为公比的等比数列,从而可求数列{an}的通项公式;利用分组求和法即可求得前n项和Sn;
(Ⅱ)依题意,可求bn+1+1=(bn+1)2,两端取对数,可证数列{lg(bn+1)}是首项为lg(t+1),公比为2的等比数列,从而可求数列{bn}的通项公式.
考试点:数列的求和.
知识点:本题考查数列的求和,着重考查等比关系的确定及分组求和的应用,(Ⅱ)中对bn+1+1=(bn+1)2两端取对数是关键,也是难点,考查分析、运算与应用能力,属于难题.